Non-contrastive features and categorical patterning in Chinese diminutive suffixation : M[F] or I[F]?*

نویسنده

  • Jie Zhang
چکیده

The influence of non-contrastive phonetic details such as intergestural timing, stop release burst and articulatory effort expense on phonological patterning has been discussed extensively in Browman & Goldstein (1992), Flemming (1995), Jun (1995), Kirchner (1997), Silverman (1997), Boersma (1998), Gordon (1999), Hayes (1999), Steriade (1999, 2000), Zhang (forthcoming), among others. Even though the way in which phonology incorporates phonetic factors is debatable (see Hayes & Steriade, forthcoming for an overview of the debate and §3.1.1 for more detailed discussion), the fact that there exist phonological patterns that are governed by phonetic factors seems less so. In this paper, without committing myself to any view of how phonetic factors are encoded in phonology, I present the case of Chinese retroflex suffixation in support of the relevance of non-contrastive phonetic features to categorical phonological patterning. In addition, I argue that MF constraints (Lombardi 1995, 1998, Casali 1996, Pulleyblank 1996, Causley 1997, Walker 1999; henceforth M[F]) are needed to account for the data in question. In many northern Chinese dialects, a retroflex approximant }y} can be suffixed to a noun to indicate the diminutive or endearing meaning of the noun. In this paper, I focus on the interaction between the retroflex

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximately generalized additive functions in several variables via fixed point method

In this paper, we obtain the general solution and the generalized   Hyers-Ulam-Rassias stability in random normed spaces, in non-Archimedean spaces and also in $p$-Banach spaces and finally the stability via fixed point method for a functional equationbegin{align*}&D_f(x_{1},.., x_{m}):= sum^{m}_{k=2}(sum^{k}_{i_{1}=2}sum^{k+1}_{i_{2}=i_{1}+1}... sum^{m}_{i_{m-k+1}=i_{m-k}+1}) f(sum^{m}_{i=1, i...

متن کامل

On quasi-Armendariz skew monoid rings

Let $R$ be a unitary ring with an endomorphism $σ$ and $F∪{0}$ be the free monoid generated by $U={u_1,…,u_t}$ with $0$ added, and $M$ be a factor of $F$ setting certain monomial in $U$ to $0$, enough so that, for some natural number $n$, $M^n=0$. In this paper, we give a sufficient condition for a ring $R$ such that the skew monoid ring $R*M$ is quasi-Armendariz (By Hirano a ring $R$ is called...

متن کامل

A Contrastive Analysis of Sports Headlines in Two English Newspapers

It holds true that a flourishing fieldof Contrastive Rhetoric (CR) research has begun to address theway various text types and/or genres may differ across culturesand languages (Corner, 1996).  Very much in line withthis development, this study was an attempt to characterizethe linguistic structures of headlines in the sports section of 2 English newspapers: one non-Iranian (The Times) and one ...

متن کامل

Labeling Subgraph Embeddings and Cordiality of Graphs

Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$, a vertex labeling $f : V(G)rightarrow mathbb{Z}_2$ induces an edge labeling $ f^{+} : E(G)rightarrow mathbb{Z}_2$ defined by $f^{+}(xy) = f(x) + f(y)$, for each edge $ xyin E(G)$.  For each $i in mathbb{Z}_2$, let $ v_{f}(i)=|{u in V(G) : f(u) = i}|$ and $e_{f^+}(i)=|{xyin E(G) : f^{+}(xy) = i}|$. A vertex labeling $f$ of a graph $G...

متن کامل

Amitraz Poisoning; A case study

A m i t r a z, a n i ns e c t i c i d e /a ca ri c i de of the f o r m a m i d i n e p e st i c i d e s group, is a ? 2 a d r e n e r g i c ag on i st a nd of t he a m i d i ne c h e m i ca l f a m il y generally us e d to c o n t r ol animal e c top a r a s i t e s. Poisoning due to am i t r a z i s r a r e and character...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001